您要查找的是不是:
- integral mid - value theorem 积分中值定理
- integration mid - value theorem 积分中值公式
- Rolle's theorem is a special case of the mean value theorem. 罗尔定理是中值定理的一种特殊形式。
- Give a class of integral intermediate value theorem, and obtain main result of the asymptotic property of mediant for the theorem as follows: (The equation is abbreviated). 摘要给出了一类积分中值定理,并且得到了该定理中间点的渐近性的主要结果(方程式略)。
- A Simple Proof for the generalization of Cauchy mean value theorem is given. 给出Cauchy微分中值定理的推广的一个简单证明.
- Abstract: This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral. 摘 要: 给出了积分中值定理的一个推广;讨论了推广的积分中值定理中间值的渐近性.
- This paper presents a generalization of mean value theorem for integrals and discusses the asymptotic properties of mean value of mean value theorem for integral. 给出了积分中值定理的一个推广,讨论了推广的积分中值定理中间值的渐近性。
- On the proof of the Cauchy mean value theorem,we give a simple method of construction for an auxiliary function. 关于Cauchy中值定理的证明,我们给出辅助函数的一个简单的构造方法。
- In the first part of the paper,the another form of Cauchy mean value theorem is studied. 本文的第一部分研究了Cauchy中值定理的另一种形式。
- In this paper, applying local mean value theorem, we prove some theorem of complex analysis. 运用局部复中值定理;我们重新证明了复分析中的几个定理.
- This paper is devoted to studying the asymptotic behavior of the intermediate point in the mean value theorem for first form curve integrals. A general result is obtained. 摘要讨论了第一类曲线积分中值定理“中间点”的渐近性质,得到了更具一般性的新结果。
- Study about the first mean value theorem for integrals, which obtain a new results on the mean value asymptotic behavior. 摘要研究积分第一中值定理,获得了其中值渐近性的一个新结果。
- The paper extracts the limit, proves the inquation and confirms existence of roots, skillfully using Langrangian middle value theorem. 摘要应用拉朗日中值定理求极限,证明不等式以及确定方程的根。
- This paper deduces an asymptotic property for the "median point" of Cauchy Mean value Theorem by adopting the Taylor Formula and the Law of L?Hospital. 利用泰勒公式和洛必塔法则 ,推得柯西中值定理“中间点”的一个渐近性质
- In the second part of the paper, the generalization of Cauchy mean value theorem is discussed and its weak form is given. 本文的第二部分讨论了Cauchy中值定理的推广,并给出了它的弱形式。
- In this article,the author attempts to make a fresh start,demonstrate Lagrange mean value theorem directly by coordinate revolution transformation. 本文尝试另辟新径,避免引入辅助函数而直接用坐标旋转变换来证明Lagrange中值定理。
- The structure method of auxiliary function is very important in solving questions about middle value theorem in differential calculus. 摘要构造辅助函数法是解决有关微分中值问题的一种重要数学方法。
- A Discussion on Integral Mean Value Theorem 关于积分中值定理的探讨
- An Extension of double Integral Mean value Theorem 关于二重积分中值定理的一个推广
- Note on Cauchy Mean Value Theorem of Integral Type 积分型Cauchy中值定理的一个注记