您要查找的是不是:
- LAST INTEGER SOLUTION IS THE BEST FOUND! 以上整数解是最优解!
- For problems with integer constraints, you need to decrease the Tolerance setting in the Solver Options dialog box so that Solver can find a better integer solution. 对于具有整数约束条件的问题,应该减小“规划求解选项”对话框中的“允许误差”的设置,使“规划求解”找到更好的整数解。
- Let r be an odd integer with r>1.In this paper the author gives a necessary condition for(X,Y,Z) being a positive integer solution of the equation X~2+Y~2=Z~r with Y being a power of an odd prime. 设r是大于1的奇数;给出了方程X2+Y2=Zr的正整数解(X;Y;Z)中Y为奇素数方幂的必要条件.
- Let(a,b,c) be a primitive Pythagorean triple with a is even. In this paper we prove that if c is a prime power,then the equation x~2+b~y=c~z has only the positive integer solution(x,y,z)=(a,2,2) with y is even. 设(a;b;c)是一组适合a为偶数的本原商高数;该文证明了:当c是素数方幂时;方程x2+by=cz仅有正整数解(x;y;z)=(a;2;2)可使y是偶数.
- In this paper, let p be an odd prime with p>3, we prove that the equation (xp-yp)/(x-y)=z2 has only the positive integer solution (x, y, z, p)=(3,1,11,5), satisfying x>y+1. gcd (x, y)=1. As a result, x is an odd prime power. 设p是大于3的奇素数,证明:方程2)()(zyxyxpp=--,1+>yx,1),gcd(=yx仅当p=5时有正整数解)11,1,3(),,(=zyx可使x是奇素数的方幂。
- Using the elementary methods, all the positive integer solutions of the equation are obtained.The solvability of the equation is solved completely. 利用初等方法,获得了方程的所有正整数解,完全解决了该方程的可解性问题。
- And based on these results the expressions for some binary indefinite quadratic equations integer solutions are obtained. 并且利用其结果得到了几类二元二次不定方程的整数解表达式。
- number of positive integer solution 正整数解数
- In this paper we have found out all integer solutions of the Diophanine equation in the title, which was proposed by Mordell in 1969 and reproposed by Guy in 1981. 1969年,Mordell提出求解不定方程6y~2=(x+1)(x~2-x+6),本文解决了这个问题,求得了这个方程的全部整数解。
- In this paper,the author has proved that the Diophantine y(y+1)(y+2)(y+3)=nx(x+1)(x+2)(x+3) has no integer solutions when n=13~(2k),k is a natural number . 本文用初等方法证明了不定方程y(y+1)(y+2)(y+3)=nx(x+1)(x+2)(x+3)在n=13~(2k)(k为自然数)时无解.
- It is proved that if p>3 and D is not divisible by p or primes of the form 2kp+1,then the equation x~p-2~p=pDy~2 has no positive integer solutions (x,y) with gcd (x,y)=1. 本文证明了:当p>3时;如果D不能被p或2kp+1之形素数整除;则方程xp-2p=pDy2没有适合gcd(x;y)=1的正整数解(x;y).
- In 1997,Andrew Beal conjectured that if A=B=C=1,m,n,r are all larger than 2,the equation has not positive integers solution. 1997年;Andrew Beal猜想:如果A=B=C=1;m;n;r均大于2;则该方程没有正整数解.
- It may take a long time to find a solution to the problem. 也许要花很长时间才能找到解决这个问题的办法。
- The Positive Integer Solution to a Class of Diophantine Equations 一类丢番图方程的正整数解
- Integer Solution to A class of Linear Complementarity Problem 一类线性互补性问题的整数解
- I simply refuse to conceive of such a solution. 这样的解决办法,我是绝对不考虑的。
- What color is copper sulphate solution? 硫酸铜溶液是什么颜色?
- Mary is sceptical about the solution. 玛丽对这个解决办法表示怀疑。
- His problem did not really admit of any solution. 他的问题真是没有解决的可能。
- He doped out a solution to the problem. 他想出一个解决该问题的方法。