您要查找的是不是:
- It_?方程解的稳定性 STABILITY OF SOLUTION OF lt? EQUATION
- 含时滞的偏泛函微分方程解的稳定性 STABILITY OF SOLUTION FOR PARTIAL FUNCTIONALDIFFERENTIALEQUATIONWITH DELAY
- 不动点理论在非线性方程解的稳定性中的应用 An Application of Fixed-point Theory for Neutral Volterra Equation
- 一类时滞状态相关的中立型泛函微分方程解的存在性定理 Existence of Solutions for a Class of State-dependent Neutral Differential Equations
- 具有正负系数的一阶中立型微分方程解的渐近性与振动性 The Gradation and Vibrating Nature of the First Order Nonlinear Neutral Differential Equation with Positive and Negative Coefficients
- 具有缓变系数的三阶非线性微分方程解的稳定性 Stability of Solution for Third - Order Nonlinear Differential Equations with Slowly Changed Coefficients
- 讨论了一般的 Euler方程解的振动性 ,并利用它研究了二阶微分方程的振动性质 In this paper,we obtained some results on the oscillation of solutions of general Euler equation. With the results we studied oscillatory properties of differential equation of second order by using the results.
- 三个年龄结构的单种群动力系统持续性与周期解的稳定性 Persistence and global stability of periodic solution for three stage structure single species dynamics system
- 关于某类整函数系数高阶齐次线性微分方程解的级和零点 On the zero and hype-order of solutions of certain non-homogeneous differential equations with entire coefficients
- 周期解的稳定性 periodic solution
- 勒让德方程解的探索 Exploration of Solving Legendre Equation
- 反馈型CNN解的稳定性 Stability of CNN With Feedback
- 时间测度上具变号系数时滞微分方程解的渐近性与振动性 Oscillation and Asymptotic Behavior of Solutions of Delay Differential Equations with Oscillatory Coefficients on Time Scales
- 问题解的稳定性和唯一性 The Stability and Uniqueness of Solution for Problem of Minimax
- 利用"质点运动"的方法剖析微分方程和差分方程解的本质 Analyze the Nature of Solutions of the Differential Equation and the Difference Equation with the Physical Way of "Particles Movement"
- 态射方程解的惟一性 On Uniqueness of the Solution of a Morphism Equation
- 脉冲积分微分系统解的稳定性 STABILITY OF VOLTERRA DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECT
- 微小扰动下NLS方程解的摄动分析 Perturbation Analysis of the Solutions of Perturbed NLS Equations
- 关于扰动差分方程零解的稳定性 Stability of the Null Solution to the Disturbed Difference Equations
- 二阶微分方程解的增长性 On the Growth of Solutions of the Second Differential Equation