您要查找的是不是:
- Some Thinking on the Cauchy Theorem of mean 对柯西中值定理的若干认识
- cauchy theorem of mean 柯西中值定理
- Cauchy theorem 柯西定理
- A Simple Proof for the generalization of Cauchy mean value theorem is given. 给出Cauchy微分中值定理的推广的一个简单证明.
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- The cauchy integral formula and cauchy integral theorem are discussed in this paper. 本文主要讨论双解析函数的 Cauchy积分公式 ,Cauchy积分定理等问题。
- On the proof of the Cauchy mean value theorem,we give a simple method of construction for an auxiliary function. 关于Cauchy中值定理的证明,我们给出辅助函数的一个简单的构造方法。
- In the first part of the paper,the another form of Cauchy mean value theorem is studied. 本文的第一部分研究了Cauchy中值定理的另一种形式。
- Clinical staging was done according to Binet Method. 临床分期按照Binet分期方法。
- Del(ATM) was not serious among three Binet stages(P>0.05). ATM缺失在Binet A、B及C期中无统计学差异(P>0.;05)。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- Otherwise, the paper also discussed the same question of Cauchy random variables and got the result as theorem 1.2. 另外,本文考虑了柯西向量二次型分布同样的问题,并相应得到的两个不等式(定理1.;2)。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- The Kepler problem is solved by vector method and without the Binet equation. 直接利用矢量解法求解开普勒问题;不必借助于比奈方程.
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。