您要查找的是不是:
- A nearly integrable system is an important branch of Hamiltonian system. 近可积系统是哈密顿系统中的一个重要系统。
- A class of quintic Hamiltonian system with Z2-symmetry is considered. Using the methods of qualitative analysis, the global phase portraits are given. 摘要利用定性分析的方法,研究一类具有Z2-等变性质的五次哈密顿系统,画出了其全局相图。
- This work gives a description of the quantum state of Hamiltonian system by coherent state in theoretical formalism. 从理论形式上给出了哈密顿系统状态的相干态表示。
- At last symplectic schemes of Hamiltonian system for nonlinear Schrodinger equation have been extended to higher dimension. 最后,把非线性Schr(?) dinger方程的辛格式推广到了高维,并给出了一种特殊的非线性Schr(?)
- By using critical point theory,we obtain some sufficient conditions for the existence of multiple periodic solutions to a discrete Hamiltonian system. 本文利用临界点理论;建立了一类离散哈密顿系统存在多个周期解的一些充分条件.
- The existence of a homoclinic orbit for a singular second order planar Hamiltonian system is proved by using variational methods. 用变分方法证明了二阶奇异平面哈密顿系统的同宿轨道的存在性.
- Hamiltonian system is one of important system in dynamics because all earthy physical course without any loss of energy must be classified in Hamiltonian system. 哈密尔顿体系是动力学系统的重要体系,一切真实的、耗散可忽略不计的物理过程都可以表示成哈密尔顿体系。
- Some symplectic difference schemes for a quantum system were constructed in terms of thesymplectic difference schemes of nonautonomous Hamiltonian system. 根据非自治哈密顿系统的辛差分格式,构造了适用于一个哈密顿显含时间的模型量子系统的辛差分格式。
- Based on the dual variables,the Hamiltonian system theory is introduced into plane orthotropy elasticity,the transformation from Euclidian space to symplectic space is realized. 通过引入对偶变量,将平面正交各向异性问题导入哈密顿体系,实现从欧几里德几何空间向辛几何空间的转换。
- The second section is concerned with the number of zeros of the Abelian integrals for a cubic Hamiltonian system with double homoclinic orbit under -order perturbations. 第二章讨论了具有双同宿轨的三次Hamilton系统在一类 次多项式扰动下的Abel积分零点个数。
- The basic equations for electro-magnetic wave-guide problems are derived to Hamilton system formulation and symplectic geometric form. 以不同截面形状的波导和部分填充波导为例进行了计算和分析,数值算例表明,辛体系用于电磁波导分析是有效的。
- The response of a two-degree-of-freedom vibro-impact system under stochastic excitation can be obtained by using stochastically excited and dissipated Hamiltonian system theory. 本文应用随机激励的耗散的哈密顿系统理论研究了二自由度碰撞振动系统的随机响应。
- This pater presents a separable Hamiltonian system in elasticity and its corresponding variational principle. Further its finite element method is taken to solve thick laminated composite plate problems. 本文给出弹性力学中可分的哈密顿系统及其相应的变分原理,用有限元法求解了强厚度复合材料叠层板问题。
- Finally, the L2-disturbance attenuation control of port-controlled time-delay Hamiltonian systems are discussed. 最后讨论了受控时滞哈密顿系统的L2干扰抑制控制问题。
- Secondly,some notions and conceptions are given for the L2-gain problem of time-delay Hamiltonian systems. 然后针对时滞哈密顿系统提出了L2增益问题,并扩展了拉萨尔不变集原理。
- Based on the basic equations of elasticity,the theory of Hamiltonian systems in elasticity is achieved. 从弹性力学基本方程出发,给出了弹性力学中哈密顿体系理论。
- The associated soli-ton hierarchy is decomposed into two new compatible Hamiltonian systems of ordinary differential equations. 进而把相应的孤子方程分解为两个新的相容的有限维哈密顿系统。
- In thisarticle, we study a kind of sublinear second-order Hamiltonian systems with elastic impactionand obtain infinite subharmonic solutions. 本文讨论了一类带有碰撞的次线性哈密顿系统,得到了无穷多次调和解的存在性。
- The third part is to proof theimpaction set is finite.Comparing Hamiltonian systems without impacts, we should use a technical codition. 相对于没有碰撞的哈密顿系统而言,我们为了证明碰撞点集是有限集而加入了一些技术性条件。
- We also dicuss solvability of the systems satisfying other boundary conditions.Our results extend some known conclusions about second order Hamiltonian systems. 同时还提出了方程满足其它边值条件的可解性.;从而推广了前人关于低阶情况的结论