您要查找的是不是:
- poset greedoids 偏序集广义拟阵
- It is known that poset theory is important to the study on greedoid theory. 摘要众所周知,偏序集理论在研究广义拟阵论中起着重要作用。
- But what is the direct relation between poset theory and the containment relations between different kinds of greedoids? 但是偏序集理论与不同种广义拟阵间的包含关系的直接联系是什么呢?
- How to apply poset theory to solve such problem? 怎样运用偏序集理论的手法去解决该问题呢?
- By studying the poset Gauss greedoids and poset Gauss structure, some properties of the poset Gauss greedoids are got.Finally, an equivalent characteristic of the poset Gauss greedoids are presented. 通过对偏序集高斯广义拟阵的结构分析,由偏序集高斯结构得到了偏序集高斯广义拟阵的性质,并且给出了偏序集高斯广义拟阵的一个等价刻画。
- In order to obtain the answers, the applications to study the containment relations between classes of greedoids are discussed by constructing a poset for all greedoids defined on the same set. 为得到答案,首先对于定义在同一集上的全体广义拟阵构造一个偏序关系,运用这种偏序关系讨论不同种的广义拟阵间的包含关系。
- It is known that poset theory is important to the study on greedoid theory.But what is the direct relation between poset theory and the containment relations between different kinds of greedoids? 众所周知;偏序集理论在研究广义拟阵论中起着重要作用.;但是偏序集理论与不同种广义拟阵间的包含关系的直接联系是什么呢?
- A poset is an FS-domain iff it is a Lawson compact FS-poset. 一个偏序集是一个FS-Domain当且仅当它为Lawson紧的FS-偏序集;
- In this paper, let X be a finite poset, then Aut2 X ?Aut X . 证明了有限格 2 X 的自同构群 Aut2 X 与有限偏序集 X的自同构群是同构的这一结论
- In this paper , we investigate the interval topology on a poset . 本文主要研究了偏序集上的区间拓扑的一些性质。
- Keywords poset;group;matroid;poset matroid;greedoid; 偏序集;群;拟阵;偏序集拟阵;广义拟阵;
- The set of all Boolean association rules is just a lower segment of the graded poset. 由事物数据库的项目集构造一个分层偏序集,使所有布尔关联规则之集构成该分层偏序集的一个下集。
- Discuss mapping properties of Z-continuous poset. Some characterize theorem of Z-continuous poset is given by using galois connection. 摘要在Z-连续偏序集的基础上对其上一些映射性质作了进一步的探讨。利用伴随给出了Z-连续偏序集的等价刻划。
- A graded poset is constructed from the items of a transactional database.The set of all Boolean association rules is just a lower segment of the graded poset. 摘要由事物数据库的项目集构造一个分层偏序集,使所有布尔关联规则之集构成该分层偏序集的一个下集。
- This leads to the definition of upper bounds .Given a subset S of some poset P, an upper bound of S is an element b of P that is above all elements of S. 这种更加抽象的方式更有意义,因为你可以从一般性架构推导出各种定理,而不用关心任何特定次序的细节。
- The Number of the Order Ideals of a Poset 一类偏序集的序理想的个数
- THE BUMP-NUMBER AND THE DLG ALGORITHM FOR THE POSET 半序集的碰撞数与分层深度贪婪算法
- FS-local directed complete poset FS-局部dcpo
- Characteristic theorems for the automorphism group of a poset matroid 偏序集拟阵自同构群的特征定理
- Schur Function on the Poset of Score Vectors and Singular Score Vectors 得分向量偏序集上Schur函数和奇异得分向量