您要查找的是不是:
- A note on the teaching of Lagrange theorem of mean 微分中值定理教学的一点注记
- lagrange theorem 拉格朗日定理
- Lagrange theorem mean 拉格朗日中值定理
- Based on Helmholtz theorem, the general conditions that H is dependedent only on conductioncurrent are derived. 并依据亥姆霍兹定理推导了H仅与传导电流有关的一般条件。
- Telesto is in Tethys' leading Lagrange point. Telesto在土卫三的拉格朗日点的前点上。
- Let us restate the assertions above as a theorem. 我们把上述的断言重新表述为一个定理。
- The strain energy density function equals the Helmholtz. 应变能密度函数等于亥姆霍兹函数。
- The second proof of Theorem 26 is due to James. 定理26的第二个证明属于詹姆斯。
- Theorem g is called binomial theorem. 定理g称为二项式定理。
- This completes the proof of the convexity theorem. 这就完成了凸定理的证明。
- Enforce essential boundary conditions using Lagrange multipliers. 用拉氏乘子加强本征边界条件。
- Based on the Rolle mid-value theorem, by using determinant method, the Lagrange mid-value theorem and Cauchy mid-value theorem are obtained, and some new results are discovered. 本文从罗尔中值定理出发,这用行列式理论,不仅证明了拉格朗日中值定理和柯西中值定理,还发现了一些新的结论。
- This calculation illustrates the theorem. 这个计算说明了这样一个定理。
- These methods are Lagrange mean-value theorem, monotone function, extreme value of function, Taylor formula, concave and convex function. 提出六种常用的方法,并指出每一种方法的适用类型、解决问题的关键和证明问题的具体步骤,最后结合实例说明方法的可用性。
- We call this principle a rule and not a theorem. 我们称这个法则为原理而不称为定理。
- We have thus arrived at the very important theorem. 这样我们就得了一条很重要的法则。
- The theorem may be explained as follows. 这条原理可以这样来阐述。
- Lagrange is the lofty pyramid of mathematical sciences. 拉格朗日是数学科学中高耸的金字塔。
- This method helps to obtain a remarkable theorem. 这一方法有助于得出一著名的定理。
- His theorem can be translated into simple terms. 他的定理可用更简单的术语来解释。