您要查找的是不是:
- Then, use the regularized EM algorithm to do rest... 实验表明复原效果得到改善,并减少了迭代次数,效率明显提高。
- The EM algorithm iterates between the E-step and M-step until convergence. EM算法在E步骤和M步骤之间循环进行直到能够被收敛。
- Based on finite Gaussian mixture model of the EM algorithm source code, which has run reports and experimental results. 详细说明:基于有限高斯混合模型的EM算法的源程序代码,里面有实验报告和运行结果。
- The maximum likelihood estimates (MLEs) of the model are computed with the EM algorithm. 本文将其中一个扰动变量视为缺失数据,利用EM算法得到模型参数的极大似然估计。
- Firstly, revise the wavelet coefficients of the images.Then, use the regularized EM algorithm to do restoration. 该算法先对加权小波系数进行调整,再用调整EM算法进行迭代复原。
- MLE is a common parameters estimation method and EM algorithm makes its application more extensive. 而极大似然估计是一种常用的参数估计方法,EM算法使其应用更加广泛。
- Dempster, Laird and Rubin (1977) systematically described the EM algorithm under incomplete situation. Dempster,Laird和Rubin(1977)系统表述了不完全数据下极大似然估计的EM算法等。
- It uses Gassian mixture model to represent particles and adopts EM algorithm to refit particles after correction step at each time. 该算法使用混合高斯模型表示粒子,在每个时刻的修正步骤之后,采用em算法对粒子进行重新拟合。
- Jeff A. Bilmes, “A Gentle Tutorial of EM Algorithm and its Application Parameter Estimation for Gaussian Mixture and Hidden Markov Models”. 郑顺德;“不特定语句中量语者辨识系统之设计研究;”国立中山大学电机工程研究所硕士论文;民国91年9月13日.
- The estimation of the parameters can be easily done through EM algorithm and the order model is also easily selected by BIC criterion. 给出了该模型参数估计的EM算法,并利用BIC准则对模型进行定阶。
- In order to facilitate usage of these models, we use PCA to decrease input dimension, use EM algorithm and GMM to represent and train model parameters. 为了方便模型的实际应用,分别用主成份对输入变量降维,用EM算法和高斯混合分布函数来表达模型和训练模型参数。
- EM algorithm is an effective method for Maximum-Likelihood Estimate(MLE),which is mainly used to estimate parameters of incomplete data. 摘要 EM算法是实现极大似然估计的一种有效方法,主要用于非完全数据的参数估计。
- This paper gives the ML and MMSE method of channel estimation in DVB-T system and gives an iterative detection of transmitted signals using EM algorithm. 摘要针对多径信道环境下的DVB-T系统,给出了数学期望最大(EM)算法迭代检测发送信号的方法,初始信道的频率响应采用最大似然(ML)和最小均方误差(MMSE)方法进行估计。
- Dempster et al.Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion)[J].Journal of the Royal Statistical Society.Series B,1997,39:1-38. 大盘股组合与小盘股组合是通过把大盘股(小盘股)的5只股票的收益率数据做一个等权值平均得到的.
- EM algorithm and related statistical models, is a very good one foreign language books, statistics and pattern recognition for learning in people very helpful. EM算法和相关的统计模型,是很不错的一本外文书籍,对学习统计和模式识别方面的人很有帮助的。
- In order to improve the restored results and reduce the restoration time, the combination of the regularized EM algorithm and weighted wavelet algorithm was proposed. 为提高图像的复原质量,缩短时间,提出把调整EM算法与加权小波相结合的算法。
- In chapter 3, we use EM algorithm to estimate parameters in Weibull distribution and Lognormal distribution by grouped data and the simulation shows this method is available. 第三章将利用EM算法对基于分组数据的威布尔分布和对数正态分布进行参数估计,并进行模拟表明此方法的可行性与有效性。
- Facing to the fact above, this dissertation will use EM algorithm to estimate parameters, to construct a fine phylogenetic tree of the sequences which have the same length after deletions and insertions. 针对这种事实,本篇论文将使用EM算法对存在插入和缺失但序列长度假设不变的观测序列构建系统发育树进行参数估计,以为含缺损数据的序列构建良好的系统发育树。
- MLE based on EM algorithm is robust for par ameter estimation of GLM based on Gamma distribution with interval data. GLM meth od can be used to explore factors that influencing SARS incubation period with i nterval data. 基于EM算法的MLE方法对于含区间数据Gamma分布GLM参数的估计是强健的,GLM方法可以用于含区间数据SARS潜伏期的影响因素分析。
- GMM can be treated as a "soft assignment clustering" method, and this algorithm learns GMM by combining a greedy EM algorithm which has the ability to learn the GMM structure and parameters automatically without any requirement for prior knowledge. 由于高斯混合模型可以看作是一种“软分配聚类”方法,该算法结合一种贪心的EM算法来学习高斯混合模型(GMM),由贪心EM算法实现高斯混合模型结构和参数的自动学习,而不需要先验知识。