您要查找的是不是:
- Bicyclic semigroup 双循环半群
- Generalized Bicyclic Semigroups and Jones Semigroups 广义双循环半群和Jones半群
- The latter two published a monograph on semigroup theory in 1961. 后面二人在 1961 年出版了半群理论的专论。
- Bicyclic point lower right symbol, another jewelry back intact. 点右下双环符号,另珠宝回复原样。
- A construction theorem for such semigroup is obtained. 给出该类半群的一个构造定理.
- Shenyanglink, bicyclic, the entire three-ring are the number ah?? 沈阳一环,二环,三环的全程分别是多少啊???
- Monocyclic compounds yield is up to 95% as bicyclic comp... 当双环裂解率达70%25时,单环收率仍可达95%25。
- Bicyclic semigroups 双循环半群
- It follows that every nonempty periodic semigroup has at least one idempotent. 得出了所有非空周期半群都有至少一个幂等元。
- A semigroup generated by a single element is said to be monogenic (or cyclic ). 被一个单一元素生成的半群叫做 单基因 的(或 循环 的)。
- The minimal ideal of a commutative semigroup, when it exists, is a group. 交换半群的极小理想如果存在的话是个群。
- Aim: To sythesize pentanoate and hexanoate of caged bicyclic phosphate. 目的:合成笼状双环磷酸酯的戊酸酯及己酸酯衍生物。
- A semigroup is said to be periodic if all of its elements are of finite order. 半群被称为 周期性 的,如果所有它的元素有着有限次序。
- Aim:To sythesize pentanoate and hexanoate of caged bicyclic phosphate. 目的:合成笼状双环磷酸酯的戊酸酯及己酸酯衍生物。
- Aim: To synthesize carboxylate derivatives of caged bicyclic phosphate. 目的:合成笼状双环磷酸酯的羧酸酯衍生物。
- For example, every nonempty finite semigroup is periodic, and has a minimal ideal and at least one idempotent. 例如,所有非空有限半群是周期性的,并有一个极小理想和至少一个幂等元。
- Then,two important structural theorem are obtained by the special structure of Clifford semigroup. 其次,根据C lifford半群是群强半格的特殊结构,得到了C lifford半群的幂半群的两个重要的结构定理。
- If S is a semigroup, then the intersection of any collection of subsemigroups of S is also a subsemigroup of S. 如果 S 是半群,则任何 S 的子半群的搜集的交集也是 S 的子半群。
- Abstract: Aim: To sythesize pentanoate and hexanoate of caged bicyclic phosphate. 摘 要: 目的:合成笼状双环磷酸酯的戊酸酯及己酸酯衍生物。
- Aim To develop a concise method for the synthesis of bicyclic azasugar and thiosugar with novel scaffold. 目的发展一种简洁合成具有新型骨架的双环氮杂糖和硫杂糖的新方法。