您要查找的是不是:
- 一类非线性Schr(?)dinger方程及其方程组的数值计算问题 ON THE PROBLEM OF NUMERICAL CALCULATION FOR A CLASS OF NONLINEAR SCHR(?)DINGER EQUATIONS AND ITS SYSTEM
- 离散非线性Schrǒdinger方程 discrete nonlinear Schrǒdinger equation
- 带斯塔克势的非线性Schr?dinger方程L~2集中性质 L~2-concentration Properties for Nonlinear Schr?dinger Equation with Stark Potential
- dinger方程也有明确的数学物理背景,特别是带调和势的非线性Schr(?) dinger方程为描述著名的玻色-爱因斯坦凝聚(BEC)的基础数学模型([7,8,68,69,78])。 The nonlinear Schrodinger equation with potential has also definite physical background, especially the nonlinear Schrodinger equation with a harmonic potential is known as a model for describing the remarkable Bose-Einstein condensate(BEC) ( [7,8,68,69,78]).
- Schr?dinger方程一族高精度恒稳差分格式 A Family of Absolutely Stable Difference Schemes of High Accuracy for Solving Schr?dinger Equation
- 氢原子V(r)=-e_s~2/r径向Schr?dinger方程的精确解 EXACT SOLUTION OF THE RADIAL SCHRODINGER EQUATION OF THE HYDROGEN ATOM FOR POTENIAL
- 耦合Klein-Gordon-Schro··dinger方程 Coupled Klein-Gordon-Schro··dinger equations
- 耦合非线性波方程 coupled nonlinear wave equation
- Schrǒdinger方程 Schrǒdinger equation
- 并行求解非线性动力方程 Parallel algorithmic of nonlinear dynamical equation
- 求非线性方程的反抛物线法 The inverse parabola method with solve nonlinear eguations
- Schr?dinger方程的一个新显格 A New Explicit Difference Scheme for SchrOdinger Equation
- 一类非线性奇摄动方程的周期 The period for a class of singular perturbation nonlinear equation
- 本论文研究了具有特殊性质的两类方程:四阶杆振动方程和非线性Schr? In thispaper,two kinds of differential equations with special properties, Four-oder RodVibration equation and Nonlinear Schr?
- 一个非线性方程的显式行波解 EXPLICIT TRAVELLING WAVE SOLUTIONS TO A NONLINEAR EQUATION
- Schr?dinger方程的时空有限元方法与守恒性 Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation
- 非线性泛函微分方程的振动性 Oscillate of Nonlinear Functional Differential Equations
- 非线性退缩抛物型方程的正解 POSITIVE SOLUTION OF NONLINEAR DEGENERATE PARABOLIC EQUATION
- 一个非线性发展方程的准确解 Exact Solution of a Nonlinear EvolutionEquation
- 通过构象Schr?dinger方程的数值解,证明在简谐势谷中的能谱是等间距的,而在势谷以上,能谱是非连续的,并具有近似二度简并的特点。 Through the numerical solution of the conformation Schrodinger equation in simple-harmonic potential well, it is proved that the energy spectrum is equalspacing, but the spectrum is not continuous above the well and is doubly degenerate approximatly.